
NASAdWVU Software IV & V Facility

Software Research Laboratory

Technical Report Series

Annual Report

///.J. %;Y2/;f- 7_.

[.,.

,/.<'L'l <";_ < ","_-

NASA/WVU Software Research Laboratory

1995

National Aeronautics and Space Administration

West Virginia University

According to the terms of Cooperative Agreement #NCCW-0040,

the following approval is granted for distribution of this technical

report outside the NASA/WVU Software Research Laboratory

Man_r, Software Engineering WVU Principal Investigator

H

Annual Report

NASA/WVU Software Research Laboratory

1995

Contents

5

Introduction 3

1.1 Overview 3

1.2 Background 4

1.3 Objectives 5

1.4 Approach 6
1.4.1 Software Processes 6

1.4.2 Metrics 7

1.4.3 Formal Methods 7

1.4.4 Software Tools 8

1.5 Acknowledgments 9

People 10

Support Activities 12

3.1 NASA/WVU Technical Lecture Series 12

3.2 V&sV Research Quarterly 13

3.3 Technical Report Series 13

3.4 World-Wide-Web Pages 13

Process 14

4.1 IV_V within Rapid Software Development 14

4.2 IV&sV Within Reuse-Based Software Engineering 15

4.3 V&V Tools Under Development 16

4.4 The Emerging Paradigm 17
4.5 IV_V Effectiveness 18

Metrics 21

5.1 Defining Metrics for the ROSE Project 21

5.2 Misrepresentation of Software Project Statistics 22

5.3 Managing Software Projects Using the WWW 25
5.3.1 An Overview of WISE 26

5.3.2 A Brief Description of WISE 26

5.3.3 CurrentStatusofWISE................... 27

Testing 29
6.1 ValidationTesting- AnAutomatedApproach 29

6.1.1 Definitions.......................... 30
6.1.2 Recommendation....................... 30
6.1.3 Implementation........................ 31

6.2 Requirements-basedTestingandAnalysis............. 31
6.3 TheSRLTestingToolkit 33

Classification 35
7.1 VerificationandValidationofRMP................. 35
7.2 StatusUpdateforRMP 37

Chapter 1

Introduction

In our second year, the NASA/WVU Software Research Lab has made signif-

icant strides toward analysis and solution of major software problems related

to V&V activities. We have established working relationships with many on-

going efforts within NASA and continue to provide valuable input into policy
and decision-making processes. Through our publications, technical reports,

lecture series, newsletters, and resources on the World-Wide-Web, we provide

information to many NASA and external parties daily.

This report is a summary and overview of some of our activities for the past

year. This report is divided into 6 chapters: Introduction, People, Support Ac-

tivities, Process, Metrics, and Testing. The Introduction chapter (this chapter)

gives an overview of our project beginnings and targets. The People chapter

focuses on new people who have joined the Lab this year. The Support chapter
briefly lists activities like our WWW pages, Technical Report Series, Technical

Lecture Series, and Research Quarterly newsletter. Finally, the remaining four

chapters discuss the major research areas that we have made significant progress

towards producing meaningful task reports. These chapters can be regarded as

portions of drafts of our task reports.

1.1 Overview

This Annual Report outlines specific research work on projects in four major

areas of IV_V: Process, Metrics, Testing, and Classification. The following ta-

ble shows a breakdown of these topic areas, subtopics, and outreach research

projects that are exploring aspects of each subtopic. Many of the related project
overlap into several topis and subtopics, but this is to be expected since it is diffi-

cult to separate the complex dimensions of software projects. Applied research

into each of these areas is needed to support findings and recommendations
that will form the Task Reports in each of these areas. Our pro-active approach

hashelpedadvocatethebenefitsof IV&V anddemonstrateits effectivenessto
NASAthroughouroutreachefforts.

Topic Area Subtopic Related Project(s)

Process IV&V and Rapid Software

Development Methods

Rapid Development Lab

at Johnson Space Center (JSC)

IV&V and Software Reuse Reusable Objects

Software Environment Project

at Johnson Space Center (JSC)
IV&V Tools EOSDIS IV&V effort

by Intermetrics, Inc.

IV&V Process Paradigms summary of other

process efforts

IV&V Cost Effectiveness EOSDIS, International

Space Station (ISS)

Metrics Defining Metrics ROSE at JSC

for the ROSE Project

Misrepresentation of summary of other

Software Project Statistics metrics efforts

Managing Software ROSE, EOSDIS, ISS

Projects on the WWW

Testing Validation Testing EOSDIS
ISSRequirements-based

Testing and Analysis
The SRL test toolkit

V&V of the Reliable

Multicast Protocol

Classification

EOSDIS, ISS, and

the Cassini project at

the Jet propulsion Lab (JPL)

EOSDIS, ISS,

Information Sharing Protocol (ISP)

at Johnson Space Center (JSC), and

Cassini

[Page]

14

15

16

17

18

21

22

25

29

31

33

35

Sections of each chapter in this report discusses the specifics of each project,

topic, and the details of the outreach efforts involved. Further information

can also be found va our Home Page on the World-Wide-Web (WWW) at

http ://research. ivv. nasa. gov/.

1.2 Background

Space is the most difficult environment for humans and machines to operate
in. The vacuum of space is subject to enormous temperature changes, and our

ability to fix spacecraft in orbit is extremely limited. With each new mission,

NASA confronts increasing levels of system sophistication and complexity. In

order to control and operate these new systems, a greater dependency is being

placed on software. To meet the increased system demands, system software, in

turn, is experiencing a dramatic increase in size and overall complexity. NASA

recognizes that defects embedded within increasingly sophisticated and prolific

system software represent a threat to future missions and has decided to take

steps to minimize this risk.

In October1991,the UnitedStatesCongresspassedPublicLaw 102-139
establishinga NASASoftwareIV&VFacilityin Fairmont,WestVirginia(here-
afterreferredto as"the Facility").Theprimarymissionof theFacilityis to
advancethe state-of-the-artin the areaof softwareVerificationandValida-
tion (V&V)tools,techniquesandmethodologies,andto advanceandpromote
theSoftwareAssurancedisciplinein general. To this end, the Facility is in-

volved with Technology Transfer through the development of a comprehensive

training program that will include involvement with community schools, tech-
nical training for software practitioners, management training for software and

non-software program and project managers, and advanced training leading to
graduate and postgraduate degrees.

The primary mission of the Software IV&V Facility's Research arm is to

address the fundamental problems associated with preventing or reducing the
number of defects in software products. Since "100% error free" software re-

mains an unreasonable goal at this time, it is our mission to reduce the level

of risk involved to some quantifiable level. In order to accomplish this, the re-

search organization will identify, investigate and develop new software-oriented

tools, techniques, and methodologies useful to both the Government and the

commercial sector. The basis for identifying these new pursuits will stem from

close ties formed between the NASA Facility, the academic world, and private

industry. These strategic alliances will help to insure that new technological

pursuits are consistent with the Facility goals and objectives and represent a
valid investment in taxpayer dollars.

1.3 Objectives

The primary objectives of the research effort are to: (1) advance the state-of-

the-art in the area of software Verification and Validation (V&V), including
research, policy development, tools, techniques and methodologies; (2) promote
the transfer of technology by incorporating a user based approach to the devel-

opment of tools and prototypes that support research results and by working
closely with the Technology Transfer Office in order to support their develop-
ment of a world class training program; (3) ensure the industry relevance of
research topics through consistent and active participation in selected interna-

tionally and nationally recognized software forums; (4) promote a true spirit of

national competitiveness by soliciting candidate research topics through NASA
Research Announcements (NRAs); (5) strive to eliminate duplication of effort

through our strategic alliance with industry, academia, other government agen-
cies and other NASA Centers by acting as a focal point for similar pursuits; and
(6) to become a nationally and internationally recognized Center of Excellence
for software research within NASA.

1.4 Approach

Although there exists a significant body of research in verification and validation

of computer software, many problems still remain unresolved. Much of the

existing research, however, indicates the need for improved specification and

analysis of software requirements and design. For example, it is recognized
widely that more emphasis must be placed on activities in the early phases

of the software development life-cycle (i.e., requirements and design) because
over 75% of software faults are committed in these phases. Yet, relatively little

research has been done to solve this problem because traditional early life-cycle

phases have been informally defined and practiced. This is an example of an

area where future research in verification and validation can have an important

impact.

Since development and VgzV are complementary efforts, changes in one pro-

cess inevitably affect the other. We expect that advances in V_V research will

significantly influence development techniques and vice-versa. For example, de-

velopment of a specification technique that proves effective in verifying timing
constraints in real-time software will cause it to be used in future development

efforts. Therefore, V_V research should not be limited to techniques applicable

to current development methodologies, but rather they should significantly ad-

vance the state-of-the-art of VgzV pro-actively relative to software development.

The following are considered to be prime candidate focal areas of concentration
to be factored into the formation of an overall general strategy for research to

be performed at the Facility by West Virginia University as well as others to
come.

1.4.1 Software Processes

IV&sV plays an important role in software development by providing mechanisms

for: (1) independent customer feedback, and (2) feedback into the development

process. Although IV&V may add 15 to 45% to the cost of a software project, it

may recoup these costs by delivering high-quality and avoiding costly problems
after delivery and during the later parts of a product's lifetime (i.e., mainte-

nance).

Tools alone do not comprise an IV&V team because they must fit into a pro-

cess. First, process management tools should be developed to (1) track existing

process practices and (2) automate process execution. Research in software

process automation has been successfully applied to a few, select domains of
well-understood problems, but much work is needed to apply automation effec-

tively in many domains. Research activities will emphasize the establishment of

robust management processes in order to provide for repeatability with respect

to the application and evaluation or research products.

1.4.2 Metrics

It isnecessaryto assessthecurrentneedsandproblemsofsoftwaredevelopers
whoareusingorwishto useIV_V in theirefforts.Manysurveysexistregard-
ingparticulardevelopmentmethods,tools,andpractices.TheFacilityandits
relatedresearcheffortswill striveto consolidatesomeof thesestudiesintoa
repositoryandperformadditionalstudiesto determinetheeffectivenessof ex-
istingtechniques.ThisrepositorywillbeavaluableassetforNASAnotonlyin
determiningwhichtechniquesareeffectivebutalsoincomparingexistingefforts
to pastperformances.In thismanner,IV_:Veffortscan determine whether or

not current projects are "on track" relative to similar projects. This means

that new evaluation methods must be devised for assessing existing and new

software development and IV_:V methodologies. These evaluation techniques

will be closely linked with the research studies of software process models (see

below).

1.4.3 Formal Methods

One of the most important directions toward solving problems at early phases

of the software development life-cycle involves the use of formal methods. A

formal method is any technique for specifying and verifying precisely that soft-

ware implementations agree with their specifications. The precision of a formal

technique allows no room for misinterpretation and permits automated and re-

peatable analysis of the software specifications. Informal methods, on the other

hand, leave room for different interpretations of the customer's intent.

As promising as formal methods seem, they have serious limitations. Indeed,
one of the major barriers to the adoption of formal methods has been their high-

cost of application due to the high-skills needed to write and analyze formal

specifications. In addition, there is no guarantee that a formal specification is

correct since they are written by human developers.

Formal methods research covers a broad spectrum of software development

and V_V topics. Such research significantly impacts V_V research since in-

creased precision would eliminate many of the common problems caused by
current informal methods used in early life-cycle phases. Furthermore, different

levels of rigor can be applied to projects depending on the cost-benefit of apply-

ing a particular technique. For'example, projects involving possible loss-of-life

or high-cost equipment (e.g., a satellite) might benefit from high-cost formal

specifications. Much research is needed to leverage the advantage of formal
methods into development and V&:V while reducing the costs of its application.

The Facility's research approach will strive to capitalize on the advantages that

a formal methods approach offers, while at the same time trying to reduce the

cost and complexity associated with its implementation.

1.4.4 Software Tools

A majorpartoftheV&:Vresearcheffortwillbein theresearchanddevelopment
of newsoftwaretools.Thesetoolswill incorporateor improveuponprevious
softwaretoolsat all phasesof thesoftwaredevelopmentlife-cycle.Although
softwaretestingisstill animportantpartofmanyvalidationactivities,emphasis
will beplacedon thoseresearchareasthat havebeenidentifiedashavinga
highreturn-on-investmentrelatedto V_V. Particularemphasiswill beplaced
onearlylife-cycletools (requirements& design),softwareprocessmodeling
tools,toolsto aidin thegenerationof integratedspecificationssets,toolsfor
configuration/interfacemanagementandsoftwaremaintenance.Thefollowing
paragraphsprovidesomeimportantconsiderationsthat needto beaddressed
whendevelopingsoftwaretools.

Becausetheuseof asoftwaretooloftenimpliesaparticularclassofsoftware
processmodelsandrepresentationschemes,ourconceptofsoftwaretoolsmust
evolvebeyondthe stand-alone,proprietaryapproachesof currentcomputer-
aidedsoftwareengineering(CASE)tools.Ourtoolsmustworkin aframework
thataccommodatesexistingcommercialoff-the-shelf(COTS)toolssothatthey
canevolvewithindustrystandardsandworkexternalto NASAandtheIV&:V
FacilityResearch.Thesetoolsmustbedesignedwithinvariousconstraintsso
thattheyarecompatiblewithothertoolsandcanseamlesslyevolvein theface
ofexternalpressures.

First, thesoftwaretoolsmustaddresstheneedsof teams.Softwaredevel-
opmenteffortsareteam-orientedeffortsthat involvethecoordinationof large
groupsofpeople.TheapplicationofIV_V toasoftwaredevelopmenteffortim-
pliesthatseparategroups(developmentandV_:V)mustcoordinatetheirefforts
to makeprogress.In somecases,automatedtoolsareanecessityto streamline
proceduresthat wouldotherwisebeprohibitivelyexpensiveto coordinateand
performin parallel.

Second,theymustaddresstheneedforlegacy.It ishighlyunlikelythat de-
veloperswillabandoncurrenttechniquesimmediatelyandadoptradicallydiffer-
entpolicies.Therefore,it willbenecessarytodevelopstrategiesforincremental
adoptionof newtoolsandtechniquesthataccommodatelegacypractices.

Third, theymustaddresstheneedfor maintenance.It is estimatedthat
40-60%ofsoftwareprojectcostsarein themaintenancephasealone.Forlong-
termeffortslikeSpaceStationandEOSthiswill particularlybethecase.In
themaintenancephase,60-80%of thecostsarefor functionalenhancements
of thesoftware.Existingtoolsareprimarilygearedtowarda singleexecution
of developmentphases(i.e.,requirements,design,code,test). Newtoolsand
relatedtechniquesareneededto addresslong-termsustainingsoftwareefforts
thatwill significantlyreducesoftwarecostsin thelong-run.

Finally,softwaretoolsmustaddresstheneedfor usein differentprocesses.
Differentapplicationdomains(e.g.,embeddedavionicssoftware,databasesys-
tems,etc.) will requiredifferentprocessmodelsthat dependon thelevelof

criticalityofsoftware,thelevelofassurance,thelevelof safety analysis, and the
resource constraints of the project itself.

Our research approach will require research activities that develop tools or

prototypes that focus on the above considerations and ensure that the quality

of their products are commensurate with and complimentary to their research
objectives and are consistent with their end-use functions.

1.5 Acknowledgments

I would like to thank the many people who have made the NASA/WVU Software

Research Lab a success. Mr. George Sabolish, Manager of Software Engineer-
ing Research and our project contracting officer, has provided valuable input

and assistance. He is truly an integral part of our research effort that makes

the partnership between NASA and the University work on a daily basis. Ms.

Kathyrn Kemp, Deputy Director of the NASA Fairmont Facility, has also pro-

vided invaluable interaction with the research team. Finally, Mr. Charles Mertz,

Director of the NASA Fairmont Facility, has provided sound advice, guidance,

and judgment in helping the research project set its goals and deliver valuable

products. All of our NASA counterparts have played important roles as we seek

to create research products based on actual, on-going software efforts.
On the research team itself, I would like to thank Todd Montgomery who

has been with the project since the beginning. I hope he continues to make

significant and important progress towards his Ph.D. degree. Many others have

played roles shortly after the project began: Ramana Reddy, Steve Easterbrook,

Edward Addy, Butch Neall Frank Schneider, Wu Wen, Sudhaka Ramakrishnan,

Yunqing Wu, Jeff Morrison, Wei Sun, Sudhir Koka, Nicholay Gredetsky, Aruna
Sonti, and many other students.

In addition, I want to thank people external to the NASA/WVU SRL who
have offered sound advice and guidance. These include: Nancy Leveson, John

Gannon, John Knight, Victor Basili, Frank McGarry, and many others.

Finally, I want to thank Ms. Vivian Jenab, the administrative secretary for

the NASA/WVU Software Research Lab, for her tireless efforts.

Jack Callahan

December 1995

Chapter 2

People

Several new personnel joined during our second year. These include:

Dr. Steve Easterbrook is currently a professor at the University of Sussex.

He will join our group during a sabbatical for the next two years in Fair-

mont. Dr. Easterbrook is the author of several articles in the area of

requirements engineering and has worked most recently with Dr. Anthony
Finkelstein on a paper published in the 1995 International Conference on
Requirements Engineering.

Mr. Edward Addy works in the areas of independent software nuclear safety
analysis and software reuse. Working at Logicon, Inc., he performed nu-
clear safety analysis on Tomahawk Cruise Missile systems. He was task

leader for developing the US Navy's Software Reuse Implementation Plan

and conducted a pilot project in domain analysis for the Program Ex-
ecutive Office of Cruise Missiles and Unmanned Aerial Vehicles. He has

served as a site manager for Logicon Technical Services. Prior to .joining
Logicon, Mr. Addy taught Mathematics and Physics at the Navy Nuclear
Power School and the College of Wooster (Ohioi. He received his B.S. in

math education from Michigan State and his M.S. in mathematics from
Wake Forest University.

Dr. Ralph Neal has worked in the software industry for over 20 years and

will soon complete his Ph.D. at Virginia Commonwealth University. His

research focus is on the measurement of software and the software pro-
duction process. Dr. Neal worked in the Computing Services Department

of West Virginia University for 15 years as an Administrative Systems

Specialist. Dr. Neal is a graduate of West Virginia University where
he obtained a bachelors degree in Computer Science. He has published

papers on total quality management, measurement theory for software
metrics and object-oriented software metrics.

10

Dr. Frank Schneider has over 20 years of experience in various aspects of

software science in academia as a professor, in government, and in the

industrial arena as well. Dr. Schneider has worked as a quality assurance

engineer at NASA's Jet Propulsion Laboratory since 1988. During that

time he has worked on standards generation and review, the Formal In-

spection process and most recently as an Independent Test Engineer. In

a discipline oriented approach he represented Quality Assurance as 1 of

9 disciplines in the design of the laboratory wide Systems Development

Management Guide (D-5000). He has been involved in technology trans-

fer of the Formal Inspection process at JPL and as a practitioner in a
wide variety of verification and validation areas. As an Independent Test

Engineer, he has authored a test plan for a subsystem for NASA's new

34m Bean Waveguide Antennas to be installed as part of the Deep Space

Network at Goldstone, CA; Canberra, Australia; and Madrid, Spain. Dr.
Schneider will locate to Fairmont as a senior member of the research team,

and play a role in the Verification and Validation of software components

of the Cassini Spacecraft.

Dr. Wu Wen has a background in robotics and is interested in mobile com-

puting and reinforcement learning. He will be working with the NASA

New Millennium Project.

11

Chapter 3

Support Activities

This chapter describes support work at the NASA/WVU Software Research
Lab. These activities include our Technical Lecture Series, Research Quarterly

(a newsletter), Technical Report Series, and our World-Wide-Web resources.

3.1 NASA/WVU Technical Lecture Series

Information on the Technical Lecture Series and the speakers can be found on

the NASA/WVU SRL home page at http://research.ivv.nasa.gov.

June 19, 1995 - Dr. Mats Heimdahl (at NASA/Fairmont) of Michigan State
University will talk about his work on TCAS II requirements that he per-

formed while a Ph.D. student under Dr. Nancy Leveson.

July 7, 1995 - Dr. Frank Stomp (at NASA/Fairmont) of AT&T Bell Lab-

oratories will speak about his work on formal verification and validation

of complex telecommunication protocols.

July

July

19, 1995 - Dr. Frank Schneider (at NASA/Fairmont) of the NASA
Jet Propulsion Lab (JPL) will speak about his work on Software Quality

Assurance on Deep-Space Network ground support software projects.

20, 1995 - Dr. Eugene Zima (at WVU/Fairmont) of Moscow State

University will speak at WVU on is work in the area of symbolic alge-
bra and analysis.

August 11, 1995 - Dr. Walcelio Melo (at NASA/Fairmont) of the Univer-
sity of Maryland will speak about his work with Dr. Victor Basili in the
area of software metrics.

12

August 14, 1995 - Dr. Sreeranga Rajah (at NASA/Fairmont) from the Uni-
versity of British Columbia will talk on his work at the Stanford Research

Institute under Dr. John Rushby on formal specification and verification
of software requirements.

August 16, 1995 - Dr. Roger Fujii (at NASA/Fairmont) of Logicon, Inc.,
a world recognized expert on IV&V, will talk about his experiences on
major IV&V efforts and his visions for future IV_V research.

September 20, 1995 - Dr. John Yen (at NASA/Fairmont) of Texas A&M

University spoke on his research to develop a methodology for providing
intelligent assistance to requirements engineering.

December 15, 1995 - Amer A1-Rawas (PhD candidate at the University
of Sussex, England) spoke on his approach to improving communication

by identifying ttle weaknesses of different specification notations and com-
pensating for these through the provision of annotations.

January 18, 1995- Dr. John Knight (Department of Computer Science,
University of Virginia) will present results from two case studies in de-
veloping software for safety-critical systems.

February 26, 1995 - Dr. Mark Klein (Applied Research Lab, Pennsylva-
nia State University) will speak on addressing the weaknesses with current
coordination technology.

3.2 V&:V Research Quarterly

The NASA/WVU Software Research Lab publishes a quarterly newsletter, called

the V_:V Research Quarterly (VRQ), that is available at 304-367-8248 (Ms. Vi-

vian Jenab) or most are available via our WWW home page (see below).

3.3 Technical Report Series

We have published over 30 technical reports in the Lab. These can be ordered

at 304-367-8248 (Ms. Vivian Jenab) or most are available via our WWW home
page (see below).

3.4 World-Wide-Web Pages

We provide extensive information on our activities on the World-Wide-Web

(WWW). You can access information on the people, reports, and other publica-

tions listed in this chapter via our home page at http://rosoarch. ±vv. nasa. gov/.

13

Chapter 4

Process

This chapter concerns work regarding software development and IV&V pro-

cesses. The areas covered include research regarding IVK;V in rapid develop-
ment environments, reuse-based environments, tools, and research on overall

process models between development and IVKsV.

4.1 IV&V within Rapid Software Development

IV&V as its practiced today is almost exclusively in the domain of the waterfall

life cycle model. Although the best IV&:V is integrated into the development life

cycle, the deliverables are almost always due at the end of one of the waterfall

life cycle stages. At the Guidance, Navigation, and Control Rapid Development

Lab (GN&sC RDL), the Aerospace and Flight Mechanics Division of Johnson

Space Center (JSC) is studying the rapid development process. How will the
rapid development process affect the practice of IV&V?

The researchers of the NASA/WVU Software Research Lab traveled to JSC
to witness the presentation of a proposed Research Technical Operations Plan

(RTOP) designed to provide process definition for the rapid development of soft-

ware. Several aspects of the proposed project are of interest to the researchers.

The first item of interest is the integration of Requirements IV&:V into the

rapid development lifecycle. Rapid development (as defined in the presentation)

is characterized by using a "build-a-tittle, test-a-little" philosophy to provide

early integration of all hardware and software elements which are then incre-

mentally improved. Is it appropriate to perform IV&sV on each release (often

called a drop) of the iterative process? If we are to do IV&:V on each drop, are

we not doing extra work by pointing out the requirements that were left out on

purpose because they were to be picked up in later drops? If we don't perform
IV&sV on each drop, is there another way to keep the independent verifiers in

the development loop? Perhaps the answer will be to develop the requirements

14

matrixandassigntherequirementsto "drops".Nooneknows,of course,so
we'llhaveto keepyoupostedastheRTOPprogresses.

Theseconditemofinterestistheverificationofauto-codedsourcecode.The
fourthgenerationcodegeneratorcurrently being used in this project has the

property of generating entirely reordered code when a seemingly minor change
has been made to the data flow diagram from which the code is generated.

Should the source code be verified each time it is regenerated? In an analogous

situation, machine code is not verified each time the source code is recompiled;
indeed the machine code is never verified. Compilers are certified and thereafter

accepted as accurate. Perhaps the code generator should be certified. If an

uncertified code generator is being used, what are the proper IV&V activities
to insure the accuracy and completeness of the project?

The third item involves identifying measures that capture the dimensions

of the process and the product. As a product measurement, lines-of-code has

long been recognized as a misleading metric. With the acceptance of code

generators (where the code may vary greatly from one drop to the next), lines-of-
code becomes absolutely meaningless. Metrics designed to measure structured

systems have had limited success in measuring object oriented systems. The

rapid development paradigm adds another dimension to the problem. How

do you measure a project that is by definition only partially complete? The
RTOP plans to emphasize function points as desirable units in which to measure
productivity. Function points may or may not turnout to be the final solution

but they are almost certainly a good first approximation of the units to measure.

4.2 IV&V Within Reuse-Based Software Engi-

neering

Verification and Validation (V&V) methods have been used to increase the level

of assurance of critical software, particularly safety-critical and mission-critical

software. This activity is often performed by an agent independent from the

developing organization, and is then called Independent V&V. Software V&V is

a systems engineering discipline that evaluates the software in a systems context.

The V&zV methodology has been used in concert with various software devel-

opment paradigms, including waterfall, spiral, and evolutionary development,
but always in the context of developing a specific application system. How-

ever, the reuse-based software development process separates domain engineer-
ing from application engineering in order to develop generic reusable software

components that are appropriate for use in multiple applications.

The earlier a problem is discovered in the development process, the less costly

it is to correct the problem. To take advantage of this, V&V begins verification
within system application development at the concept or high-level requirements

phase. However, a reuse-based software development process has tasks that are

15

performedearlier,andpossiblymuchearlier,thanhigh-levelrequirementsfor a
particularapplicationsystem.

In orderto bringtheeffectivenessof V_V to bearwithin a reuse-based
softwaredevelopmentprocess,V&sVmustbeincorporatedwithin thedomain
engineeringprocess.Todate,nomodelhasbeendevelopedforthis. Failureto
incorporateV&sVwithindomainengineeringwill resultin higherdevelopment
andmaintenancecostsdueto losingtheopportunityto discoverproblemsin
earlystagesofdevelopmentandhavingto correctproblemsin multiplesystems
alreadyin operation.Also,thesameV&V activitieswill haveto beperformed
foreachapplicationsystemhavingmissionorsafety-criticalfunctions.

Ontheotherhand,it isnotpossibleforall V&sVactivitiesto betransferred
intodomainengineering,sinceverificationextendstoinstallationandoperation
phasesof developmentandvalidationisprimarilyperformedusinga developed
system.Thisleadsto thequestionofwhichexisting(and/ornew)V&sVactivi-
tieswouldbemoreeffectivelyperformedin domainengineeringratherthanin
(orin additionto) applicationengineering.

TheReusableObjectsSoftwareEnvironment(ROSE)isanewsoftwarede-
velopmentparadigmadoptedbytheNASAJSCMissionOperationsDirectorate.
Thisprocessis intendedto reducesoftwaremaintenancecostsfor theFlight
DynamicsandDesign(FDD)softwarethroughtheadoptionofObject-Oriented
SoftwareEngineeringandleveragedreuse.Someofthereusablesoftwarecom-
ponentsdevelopedusingROSEwill beusedinmissionandsafety-criticalappli-
cations.

TheROSEProjecthaschosento usetheObjectModelingTechnique(OMT)
beingdevelopedby JamesRumbaugh,et.al. Theprojectwill implementthe
modelsusingParadigmPlus,whichsupportsObject,Dynamic,andFunctional
models,andwilladdananimationcapabilityto theDynamicmodel.Theywill
alsoaddconstraintcheckingtoall modeltypesto provideconsistencyandinte-
grationcheckingacrossthemodels.Thesecapabilitieswillbeusedto simulate
themodelsasaV_:Vactivity.

Alongwithmembersof theROSEprojectthatareparticipatingindomain
engineeringandinV_V activities,wewill beexploringthequestionof which
V_;Vactivitiesto performindomainengineering.Wewill alsoinvestigatethe
impactofdomainengineeringV_:VactivitiesonV_:Vactivitiesperformeddur-
ingapplicationengineering.Theseactivitiesmayincludedependenciesoncon-
siderationssuchasthedomainarea,thereusemethodology,thereusebusiness
strategyarchetype,andthedomainmodelrepresentation.

4.3 V&V Tools Under Development

Software tools represent a means for development teams to improve their process

through formalization and automation of their activities. By developing new

tools or adapting existing tools, a team can formalize their existing practices

16

andincrementallyimprovetheirprocess.Wedonotadvocatethepurchaseof
expensiveComputer-AidedSoftwareEngineering(CASE)toolswithoutcareful
consideration,ratherwebelievethattheactofdevelopingoradaptingtoolscan
leaddevelopmentandIV,_cVteamstodiscoveraspectsof theirprocesses.

Bydevelopinganalysistools,IV&:Vteamscandiscovermanythingsabout
thesoftwaredevelopmentandIV&:Vprocesses.Forinstance,a tooldeveloped
byCTAonEOSDIShelpskeeptrackof interfacedefinitionsbetweensystem
components.Earlyin a projecttheseinterfacesareabstractandambiguous.
Astile systemdesignevolves,thespecificdetailsof systemcomponentinter-
facesarerefined.TheCTAtoolhelpskeeptrackof therelationshipsbetween
abstractinterfacedescriptionsandspecificinterfacedefinitionslaterin thepro-
cess.Inconsistenciesin theserelationshipscanindicateproblemsandpotential
sourcesof misunderstandingsin theprojectdesignbetweendifferentdevelop-
mentvendors.By developingthis tool,theEOSDISIV_V teamhaslearned
muchabouttheprocessofsystemarchitecturedevelopmentwithintheEOSDIS
developmenteffort.

Wehavetakena similarapproachwithin the IV_:V researcheffort. By
developingV_V tools,wehopeto improvethepracticeof V_cVonexisting
projectsandbetterunderstandV_:Vanalysisanditsrelationshiptothesoftware
developmentprocess.

4.4 The Emerging Paradigm

Many questions have been raised regarding the role of V&:V within new software

development paradigms such as Rapid Development Methods (RDMs). RDMs

emphasize rapid development of software through incremental deployment of

product functionality. They allow software products to evolve as project re-
quirements change, as a project undergoes budget and schedule pressures, and

as hardware platforms evolve. Many companies are now using RDMs to build

and maintain software product lines.
What is the role for IV_V in this new paradigm? Such questions are impor-

tant to ask as software development organizations mature in their enterprises.

For V_V, the RDM paradigm means that analysis activities must be tightly

coupled with and parallel development activities. Analysis from IV&:V must

provide immediate or near-immediate feedback into the development process.
This feedback must be meaningful and help guide development organizations
in their decisions regarding design changes, functional enhancements, and bug

_xes.

RDM is similar to software prototyping under the pragmatic view that most

prototypes evolve into products anyway. Rapid development implies that the

designers of the product are concerned primarily with providing functionality
and refining requirements in an operational fashion (aka prototyping). This

concern with functionality can lead to poor long-term design decisions and de-

17

signerscanalsooverlooksubtle,complexinteractionsbetweenfunctions.In
otherwords,thedesignersaremostconcernedwithnominalbehaviorsof the
softwareproduct.

AnIVSzVorganizationplaysanessentialrolein theRDMparadigm.IV_V
isconcernedwithoff-nominalbehaviors.IV&V triestofindthesubtle,complex
interactionsbetweenfunctionsandcomponentsthat takesomeextensiveanal-
ysis. Theseareexactlythebehaviorsthat areof little interestto theDesign
groupin theprototypingandRDMmodelsofsoftwaredevelopment.Thesetwo
groups,DesignandIV&V, canworktogetherin a synergisticfashionto pro-
ducehigh-qualitysoftware,on-time,andwithinbudget.Onegroupcanfocus
onfunctionalitywhiletheotherisconcernedwithlong-termdesigngoals.These
long-termgoalsareimportantto provideaconceptualframeworkwithinwhich
aproductcangrowin functionality.

Thisbipartiteapproach,calledtheRapidDesignandTest(RDT)paradigm,
is anemergingparadigmin softwaredevelopmentorganizations.Wedonot
claimthat RDTis somethingnew,ratherthat it is alreadybeingpracticed
widelyandhasonlyrecentlybeenidentifiedrecently.Forexample,Microsoft
CorporationemploysanRDTmodelin developingtheir products.Theirtech-
nicalstaffconsistsof 1800"softwaredesignengineers"and1800"softwaretest
engineers"whoworkin separate,co-equal groups. These groups coordinate
their activities through tightly-coupled "daily builds" that force product up-

grades based on bug fixes and new functionality. More information on this

paradigm will be available in a book by Michael Cusumano and Richard Selby
entitled Microsoft Secrets to be released in September 1995 by Prentice-Hall.

An IV_V organization plays the role of a "test" organization in an RDT

model throughout the development lifecycle. If we think of any IV&V analysis

as a "test" of the current design, IV&V can provide immediate feedback in

a synergistic fashion to a development organization. It can look for subtle,
complex interactions between system components and functions. IV&V can

alert development to their presence as early as possible in the lifecycle. IV&:V

can fulfill both of its primary objectives within the RDT model: increase quality

through immediate, added-value feedback and long-term avoidance of high-cost
errors. The RDT paradigm affirms IV_V's value and role especially within

large, complex software development projects.

4.5 IV&:V Effectiveness

One of the most important questions facing the manager of any software devel-

opment effort is "How do I build a high-quality software system within my time

and budget constraints?" The answer to this question, if one exists, is likely to

be complex. As Fred Brooks states, there is "no silver bullet" that will help
us build software quickly and easily because software, by its very nature, is

inherently complex. Independent verification and validation (IV&:V) has been

18

promotedasaneffectivetechniqueusedon the development of large, complex

software systems to build high-quality software on time and within budget. But

how much IV&:V is appropriate and how does a manager determine its effec-

tiveness? Simple answers to these questions are likely to confound the problem

and oversimplify the issues.

Strong evidence points to the effectiveness of IV&;V on large, complex projects.

Extensive reports such as the JPL Study on IV&:V Effectiveness, the Leveson
Assessment of Shuttle Flight Software and other many other references strongly

recommend IVgzV on major projects where cost, quality, and schedule problems

can have dire consequences. The lack of a continuous, independent technical re-
view of project artifacts and activities can lead to disastrous problems. Further-

more, projects with some form of IV&;V practiced from early in the development

lifecycle have reported significantly better success rates. Such assessments, how-

ever, are anecdotal and quantitative analysis is limited.
We believe that IV&:V activities are fundamental to large, complex projects.

This currently makes it difficult to clearly identify the benefits of IV&V in a

quantitative manner since it is difficult to separate the added-value of IV&V
from the rest of the software development effort. For example, issues raised by

the IV&V contractor at milestone reviews are not always captured. Likewise,

suggested solutions by IV&:V are not always recorded during reviews. It is un-

realistic to expect that all reviews, suggestions, comments, and communication
be recorded in detail regarding IV_V activities because such an effort would

put an undue burden on IV&:V practitioners.
Furthermore, there is a Hawthorne Effect on software development due to

the presence of IV&:V on a major project. The mere presence of a group such
as IV&V in the process l ifecycle has significant effects on the behavior of the

software development group itself. It is very difficult to assess the hypothetical
effect of the absence of IV_V in such an environment.

All of these points lead us to a preliminary conclusion that simple metrics do

not tell the entire story regarding IV&;V effectiveness on large, complex projects.

This has long been true for measuring other aspects of the software development

effort such as programmer productivity, software reliability, estimated errors per
line of code, code complexity, and a host of other measures. These measure-

ment problems have been and continue to be the subject of ongoing research.

Measuring IV&:V effectiveness is no less difficult a problem.
Under the direction of Dr. Ralph Neal at the NASA/WVU Software Re-

search Lab here in Fairmont, we have begun to examine empirical data on major

software projects that have employed IV&:V. Dr. Neal and Dr. Joshi of Fairmont

State College are conducting an analysis of IV&:V data on the Day-Of-Launch

I-Load Update (DOLILU) software for Space Shuttle Ground Support. This

analysis will help form a basis for sound software metrics on IV&:V effective-

ness.
Current software measurement is crude in the sense that at best it reveals

potential strengths and weaknesses in a software development process and its re-

19

latedartifacts.Currenttechniquesdonotprovidedefinitiveresultsthat provide
designs,but ratherprovidedesignsupportto management.

ThefundamentalrelationshipbetweenIV&Vandthedesignaspectsofsoft-
waredevelopmentis verydeepandnot wellunderstood.In the last issueof
theVRQ(January-March1995),wereportedonresearchonaparadigmthat is
emerginginsoftwareengineeringwhereanalysisfromIV_:Vprovidesimmediate
or near-immediatefeedbackto designersthroughoutthesoftwaredevelopment
process.Thisfeedbackhelpsguidedevelopmentorganizationsin theirdecisions
regardingdesignchanges,functionalenhancements,andbugfixes.In sucha
model,thedesignpartofdevelopmentisconcernedprimarilywithnominalbe-
haviorsof thesoftwareproduct.IVY:V,however,isconcernedwithoff-nominal
behaviorsofthesoftwaresystem.IVSzVtriesto findthesubtle,complexinter-
actionsbetweenfunctionsandcomponentsthat takesomeextensiveanalysis.
Theseareexactlythebehaviorsthat areof little interestto thedesigngroup,
especiallyin prototyping,incremental,evolutionaryandotherrapiddevelop-
mentmodelsof softwaredevelopment.Thesetwogroups,designandIVK:V,
canworktogetherin a synergisticfashionto producehigh-qualitysoftware,
on-time,andwithinbudget.Onegroupcanfocusonfunctionalitywhilethe
otherisconcernedwith long-termdesigngoals.Theselong-termgoalsareim-
portantto provideaconceptualframeworkwithinwhicha productcangrowin
functionality.

An IVLzVorganizationplaysa vital andfundamentalrolethroughoutthe
developmentlifecycle.If wethink of anyIV&V analysisasa "test" of an
evolvingdesign,IV&V anprovideimmediatefeedbackin asynergisticfashion
to a developmentorganization.It canlookfor subtle,complexinteractions
betweensystemcomponentsandfunctions,IV&V canalert developmentto
theirpresence.

Approachesthatusethenumberofissuesreports(e.g.,RID,DR,CR,DITR,
etc.) foundbyIV&zVversusthetotal numberof reportscreatedona project
oversimplifytheroleofIVL:Vonaproject.Suchapproachesignorethenature
ofthesoftwareprocessrelativeto theimpactandfrequencyof reportingonre-
quirements,design,andcodeactivities.Forexample,IV&_Vmaybeidentifying
significantproblems,but if synchronizationis infrequentbetweendevelopment
andIV&:Vthenthebenefitsof IV&;Vcanbelost. Anotherexampleconcerns
traceabilityof activitiesthroughoutthesoftwaredevelopmentlifecycle.If re-
quirementsarenotupdatedanddonot traceclearlyto designandcode,then
anoutstandingrequirementsreviewmayhavelittle impact.

StudieshaveshownthatIV_zVcanbeahighlyeffectiveapproachtosoftware
developmentif it is employedcorrectly.Any measurementmusttakethese
dimensionsof theprocessintoaccountbeforequantitativestatementscanbe
madeabouttheeffectivenessofIV&Vonlarge,complexprojects.Untilresearch
iscomplete,projectmanagersareill-advisedtoadoptunqualifiedmeasurements
andmustexamineanecdotalevidenceon their ownprojectto determinethe
benefitsof IV&V.

2O

Chapter 5

Metrics

This chapter describes ongoing work in the area of softare metrics in IV&V.

We discuss current experiments, tools, and preliminary results of collection,

processing, and analysis of software metrics for development and VL:V activities.

5.1 Defining Metrics for the ROSE Project

A Memorandum of Understanding (MOU) is being considered among NASA/WVU

Software Research Lab (WVU), NASA Johnson Space Center (JSC) NASA

Mission Operations Directorate (MOD), and Rockwell Space Operations Com-

pany(RSOC) to study the metrics being collected by the ROSE project. The
thrust of the study is to identify the smallest set of metrics both necessary and

sufficient to measure the important dimensions of the software.

It is not beneficial to measure the same dimension of an object by more than

one method. Each method will have its own degree of accuracy and its own cost

of application. Once the necessary degree of accuracy has been established, the
most cost effective method that delivers that level of accuracy should be the
measurement of choice.

This study will:

1. identify important dimensions of the software,

2. classify metrics by the dimension(s) they measure, and

3. use multivariate statistical methods to investigate the parallelism/orthogonality

of the captured metrics.

21

5.2
Misrepresentation of Software Project Statis-
tics

It is widely acknowledged that software projects often over-run on budget and
schedule, and in some cases never deliver usable software. But exactly how

bad is the problem? When faced with this question, many software engineers
cite the GAO study, published in 1979, which stated that only 2% of software

contracted for was usable as delivered. The commonly cited figures from that
study were:

50% of contracts had cost overruns

60% of contracts had schedule overruns

45% of software contracted could not be used
29% of software was never delivered

19% of software contracted had to be reworked to be used

3% of software contracted had to be modified to be used
2% of software contracted was usable as delivered

These data are correct, but highly misleading. To see why, it is necessary to
take a closer look at the study itself. The study examined a number of software

contracts, commissioned by various federal agencies, for custom-built business

and administrative systems. Two surveys were performed, followed by detailed
case studies. The first survey covered 163 contractors, but the results were

never published. The second covered 113 Federal data processing personnel with

contracting experience. The results of this survey are shown below. Compare
the percentage of respondents saying that "software paid for but never used"

happens rarely (57.1%) or never (20.5%) with the set of figures above. Surely
some mistake?

Software development
has dollar overrun

Software Development
has calendar overrun

Delivered software

must be corrected

or modified by

in-house programmers

Software is paid for
but never used

Delivered software

....is difficult to modify

Very Fairly Not very
common common common

21.2 29.2 25.7

30.1 31.9 25.7

8.8 34.5 35.4

5.3

3.6

37.2

16.1

38.1

Very Never Don't

rare occurs know

9.7 6.2 8.0

8.0 1.8 2.7

13.3 6.2 1.8

57.1 20.5 2.7

11.5 4.4 3.5

The first set of figures above were produced from the second part of the

22

study,a detailedanalysisof ninesoftwarecontracts.Eightof thesecontracts
werechosenfor studybecausetheywereknownto beproblematic;severalof
themhadpendinglitigationat thetime. Justoneof theninewaschosenas
anexampleof goodpractice.Thenineprojectstotaled$6.8million.Theone
goodpracticeprojectcostjust$119,800,oraround2%of thetotalcostof the
contractsstudied.Hencetheresult"2%ofsoftwarecontractedforwasusableas
dehvered. Thenineprojectswereneverintendedtobearepresentativesample;
it isonlytheirrepeatedpresentationin theliteraturethathasgiventhemthis
interpretation.Andaswehaveseen,not onlywasthis not a representative
sample,butthefiguresgiveamisleadingimpressionofthenineprojectsstudied:
2%(bycost) sounds a lot more dramatic than 11% (or one ninth)!

The real aim of the study was not to determine what proportion of projects

fail, but to find out the causes of failure. The table below indicates that the pri-

mary causes were contractual and management, with failure to specify require-
ments adequately occurring on all but one of the eight problematic contracts.
(The "good practice" case is easy to spot in the table).

Case Number --

1 2 T-?- -g
Agency overestimated its own _ --

state of progress when it let the contract

Incorrect agency management action,
such as using inappropriate contract

Agency failed to specify requirements
adequately

Agency over-committed itself Z
Agency failed to manage during executi-'_n,
including excessive changes

Agency failed to adequately
inspect and test

X X X

X X X X

X X X X X

X X X i X X

xlx x x
I

xlx x
I

There are a number of important lessons to be learned here. The first is

the danger of misrepresenting quantitative results from software projects. The

trend towards more measurement of the software process, and the drive for em-

pirical validation of process improvements, should increase our knowledge of
the software process. But there is also a danger that results will be misinter-

preted, leading to ill-advised decisions. For example, there have been a number

of attempts to measure the cost effectiveness of IV&V. Cost effectiveness here

usually means "is the extra cost of an IV&V contract recouped in savings from

fewer errors and reduced maintenance costs?". Suggestions for calculating this

typically involve determining the cost to detect and correct various types of er-

ror on projects that do not use IV&V, as a way of estimating the savings from
early detection of similar errors on projects that have IV&V.

23

Mostsuchstudieshaveconcludedthat IV&=Vis costeffective.Figuresfor
the benefitto costratio for IV_V havebeenashighas5 to 1. A simple
interpretationofthesefiguresmightbethatforevery$1spentonIV_V, $5are
savedin fixingerrors.Ofcourse,weshallavoidsuchsimpleinterpretations,as
thisratioishighlydependentonthetypeofproject,andthewayinwhichIV&V
is applied.ThereisalsoalawofdiminishingreturnsforIV_V spending,with
theoptimalfiguregenerallyreckonedto bearound12-18%ofthedevelopment
cost,dependingonthesizeoftheproject.2

Oneof NASA'sstudies,however,indicatedthat IVg_Vwasnotcosteffec-
tive. In 1982,Goddard'sSoftwareEngineeringLaboratory(SEL)foundthat
introducingIV_V resultedinahugeoverallproductivitydecrease,representing
anincreasein costof around85%oversimilarsoftwareproducts.At thesame
time,therewasnosignificantbenefitin any of the areas measured except for an

84 to 90% decrease in requirements ambiguities and misinterpretations. They

found no significant decrease in the number of design errors detected, and no

significant decrease in the cost to fix errors. This led them to conclude that

IV&V was inappropriate for their environment, a conclusion that still appears

in SEL reports, thirteen years later.

Just as it proved important to question the interpretation of the GAO results,

so the interpretation of the SEL's study should be questioned. Firstly, it is not
clear the technique used in the SEL study really was IV_V. The "IV_V" team

was a part of the same contractor as the development team, and certainly did

not have managerial independence. Secondly, the IV_V team had to use the

same (limited) resources as the developers, and competition for these resources

appears to have worked to the detriment of both teams. In fact, the projects

studied were a part of an operations environment, rather than a development
environment, in which developers already had a low priority for computing

resources. The addition of an IVK:V team merely exacerbated this competition.

Finally, the measures used in the study only cover the development phase, not

the whole lifecycle, so savings from improved maintainability were not measured.
Hence, we should conclude that not only is the applicability of the result to other

projects severely limited, but that the results themselves are in question. Even

the participants of the study have voiced their concerns over the interpretation
of the results.

To conclude, empirical results from software projects have to be examined

very carefully before being accepted by the software engineering community. We
have criticized the interpretation of two studies, both of which are more than

ten years old. However, in both cases it is far more common to find the studies

cited as representative results than it is to find them questioned.
Finally, note that the type of empirical work we have described depends

very much on the ability to compare projects. For example, the cost effective-

ness of a particular technique can only truly be calculated by isolating it as the
only variable factor over two or more projects. At the very least, this means

comparing two or more projects of similar size, application domain and devel-

24

opment environment, one of which used the technique and one of which did

not. Hence, evaluating the cost effectiveness of IV&V on a program such as the

Space Station is impossible, as there is no other comparable project anywhere.

More importantly, if there were a comparable project, it is unlikely that such a
project would risk not having IV&V!

[1] Blum, B. 11992) "Software Engineering: A Holistic Approach", Oxford
University Press.

[2] Lewis, R. O. (1992) "Independent Verification and Validation: A Lifecycle
Engineering Process for Quality Software", New York: Wiley.

5.3 Managing Software Projects Using the WWW

One important aspect of software development and IV&V is measurement. Un-

less a software development effort can be measured in some way, it is difficult to
judge the effectiveness of current efforts and predict future performance. The

Web-Integrated Software-metrics Environment (WISE) is an environment that
provides software projects with the capability to develop applications that al-

low project managers and developers to coordinate project activities and collect
metrics.

Collection of metrics and adherence to a process are difficult tasks in a

software project. Watts Humphries in his book Managing the Software Processstates:

The most disastrous mistakes are often made when the project is un-

der the greatest schedule pressure. These are often caused by a loss
of change control that started with a quick object patch. While the

harried programmers invariably intended to document their changes
whenever there was time, it is extremely difficult to remember pre-
cisely what was done and why.

Automated systems that handle change requests, issues, problem reports,

activity log entries, and other process documents provide an excellent platform
for tracking the status of the project. The WISE project management tool

helps developers keep track of problems, maintain record of changes, solved

problems, issues, and errors. WISE helps developers coordinate the work on a
project, distribute effort, track of discrepancies, log of all entries, and maintain
a continuous flow of data between the various groups.

WISE began as an idea to put a programmer's "to-do" list on the WWW and

allow programmers to view their own metrics as well as group metrics. WISE

also tracks "to-do" items between members of a group. For example, an error

is logged initially as an open issue (i.e., a "to-do" item). Other developers on

the project see this new open issue appear on their "to-do" lists. A developer
will mark the issue as fixed when the problem has been rectified. Fixed issues

25

showuponatestengineers"to-do"listwhowillmarktheissueasclosedwhen
successfullyretested.

WISEalsoservesasaperformanceindicator.WISEcantrackwhenchanges
to anissueoccurandprovideprojectmetricsin embeddedgraphics(i.e.,plots,
piecharts,etc.)withinWWWpages.Wehavecreatedseveralviewsof group
andindividualmetricsonprojects.Individualscancontrolaccessto theirdata
byothersandgroupviewsprovideonlyaggregateinformation.

5.3.1 An Overview of WISE

The Web Integrated Software Environment (WISE) is a system for managing
the dynamics within a software development effort. Access to documents and

the life cycle of issue reports can be managed by standard WWW browsers (e.g.,
Mosaic, Netscape, etc.). Web-browsers and other user programs that can access

the WWW can be used for this automating effort. Some advantages that such
an automated effort brings to a development group are:

• WISE overcomes the geographical barrier. By using a WWW client one

can access another resource anywhere on the Internet. This benefits the
software teams who can access the tool from any place.

• WISE overcomes the communication barrier. Encourages collaborative
software problem solving.

• WISE facilitates problem solving. Software managers can effectively track
the progress of their work group by using performance measures built

into the tool itself. WISE supports different views the tool supports of

a problem database and helps the managers handle the large amount of

detail and help them isolate problems early and suggest timely action

• WISE provides data continuity. Another advantage is that changes to the
database are reflected in all views. There is a flow of data from one to

another and every update is kept track of. This kind of continuous flow of
data from the user to the managers and back, helps coordinate the work

products of many different people who work on common projects.

5.3.2 A Brief Description of WISE

WISE is a WWW-based issue tracking tool. The clients run a browser program
and a WWW server answers client requests. With the vast variety of browser

programs for UNIX, Macintosh, and Windows, one can access the WISE with
great ease.

The user of the tool specifies the URL (Uniform Resource locator) of the

information server, logs into WISE, and views their personal "to-do" list. They
may perform one of the many kinds of operations like logging a new issue or

26

actingon existing issues. They may also view their individual or group metrics.

Some group metrics are also available to the general public.

The current backend of WISE is an Oracle database, but this is being ex-

tended to work with other SQL-based engines. Every time a user selects an

option, a query containing the user's request is sent to the backend through a

gateway that helps connect to the underlying database. The information server
returns with the data and the user views them. To solve the gateway problem

from the WWW server to the Oracle backend, we initially decided to use an
in-house software called Web* which had an Orbix interface to Oracle embedded

in Tcl/Tk. We implemented a prototype tool using this software but were not

very comfortable with the backend and the dependencies it attaches to the tool.
So we decided to search the Web for better tools.

While surfing through the net we came across a gateway program that pro-
vides a form interface in Mosaic to SQL databases. GSQL-ORACLE is a slightly

modified version of the same software except that it is specialized for Oracle SQL

backends. The working of the tool is as follows: GSQL parses the forms based

on some specification files we write and creates SQL statements. Then GSQL

invokes the oracle backend with the SQL query and the arguments filled in

by the user. The backend processes the query and returns HTML documents.

These results are sent to the client running one of the standard browsers.

5.3.3 Current Status of WISE

We now have a prototype tool working. We feel that it is very important to
use this tool in our own efforts. Indeed, we are using WISE to manage WISE's

development. The current version of the WISE tool uses GSQL as a backend
to our Oracle gateway (a DEC machine running RISC-ULTRIX 4.3). Many

different browsers can access WISE through the World-Wide-Web. There are
a limited set of metrics available, but these are growing rapidly as we see the

need for them in our projects.

WISE also provides metrics on projects in the form of graphs that compare

aspects of the group activities. The system can answer queries about the evo-
lution of issue reports in the system. For example, a manager can query the

number of open vs. closed issue reports over time in graph form. The perfor-
mance of individuals are also available but only to each individual. WISE has

strict boundaries on the availability of metric data on individual performance.

WISE allows individuals control over the visibility of their metrics to managers

and others.

WISE is non-intrusive because it provides a status list to each developer in
the team. Each element in the list can be acted upon which will change the

element's status. This might make it show up on another developer's status list.

We are also working on a programming language to specify WISE forms.
The current system is "hard-wired" in CGI scripts, but the Wise Programming

Language (WPL) is a software process language that allows form views to be

27

specifiedwithin thesoftwareprocess.A WPLspecificationis a collectionof
formdefinitionsandviews.Thecompositionoftheformsandviewsdefinesthe
totalityofthesoftwareprocess.Thus,theprocessisnotfixedorgloballydefined
bya manager,but isdynamicandchanges based on the roles of development

personnel. The composed process can be checked for consistency to ensure that

invariant and liveness properties are conserved.

The WISE project (Jack Callahan, Sudhakar Ramakrishnan & Wei Sun)

would like to thank Jason Likkai at NCSA and James Pitkow at Georgia Tech

for their help. We also thank a number of people at NASA IV&V facility at Fair-

mont and CERC. A demo of WISE is available at http://researeh.ivv.nasa.gov/.

Interest in our WWW Integrated Software Environment tool, called WISE,
has been tremendous! We have received correspondence from over 100 sites

world-wide asking for the software and over 10 sites submitted proposals as part

of an Alpha test plan. These sites include Sun Microsystems, IBM, Salomon

Brothers, and Cnet Online. To find out more about WISE, please look at our

research WWW home page at http://research.ivv.nasa.gov/. You will find a
brief demo of WISE at this site.

The Web Integrated Software Environment (WISE) is a system for managing

issue reports within a software development effort. Access to documents and

the life cycle of issue reports can be managed by standard WWW browsers (e.g.,
Mosaic, Netscape, etc.). Web-browsers and other user programs that can access

the WWW can be used for this automating effort.

WISE began as an idea to put a programmers "to-do" list on the WWW

and allow programmer to view their own and group metrics. WISE also tracks

"to-do" items between members of a group. For example, an error is logged

initially as an open issue (i.e., a "to-do" item). Other developers on the project
see this new open issue appear on their "to-do" lists. A developer will mark the

issue as fixed when the problem has been rectified. Fixed issues show up on a

test engineers "to-do" list who will mark the issue as closed when successfully
retested. WISE also serves as a performance indicator. WISE can track when

changes to the issue occurred an provide project metrics in embedded graphics

(i.e., plots, pie charts, etc.) within WWW pages. We have created several views

of group and individual metrics on projects. Individuals can control access to
their data by others and group views provide only aggregate information.

We are also working on a programming language to specify WISE issue forms.

The current system is "hard-wired" in CGI scripts, but the Wise Programming

Language (WPL) is a software process language that allows form views to be

specified within the software process. A WPL specification is a collection of
form definitions and views. The composition of the forms and views defines the

totality of the software process. Thus, the process is not fixed or globally defined

by a manager, but is dynamic and changes based on the roles of development

personnel. The composed process can be checked for consistency to ensure that
invariant and liveness properties are conserved.

28

Chapter 6

Testing

Testing remains one of the most practiced approaches to sofwtare quality as-
surance. We outline research that is exploring new testing techniques in this

chapter and the next chapter (Classification).

6.1 Validation Testing - An Automated Approach

The test approach defined within this white paper can be tailored to various

levels of testing (i.e. unit level, integration, or system certification/validation).

However, the focus of this paper primarily addresses system certification/validation

testing. The intent of this test approach is to provide mechanisms by which
validation of a system can be easily confirmed relative to the execution of a

test suite. The basis for this approach relies heavily on the establishment of

a requirements database and the allocation of requirements to functional test

threads, test cases, and test procedures. The automation associated with the

approach requires capturing functional test thread, test case, test procedure
and the recorded test session result information in a relational database man-

agement system (RDBMS). Once a process for capturing this information in a
RDBMS is adopted, a determination of the requirements satisfied by successful

test steps/procedures is deterministic. Structure Query Language (SQL) queries
can be issued to the test database to determine certification status at any given

point in time, thereby exploiting the power of SQL so that management indica-
tor reports can be generated during certification testing activities.

The automated/database oriented approach advocated yields the greatest
benefit and is essential to validation testing for large systems. When integrating

or validating large systems, the amount of information that must be managed

is too great to address by the traditional hard copy document approach. In
addition to the obvious information management benefits, the following benefits

may be realized by utilizing this automated database driven test approach:

29

• provides a basis for automating test resource scheduling (i.e. hardware,
software, etc.)

• allows management real-time access and insight into test activities to de-
termine performance against schedule

• supports regression testing and allows for variance analysis between testingactivities

• enhances information sharing among the test team

• establishes a foundation for dumping database data to deliver hard copy
plans, procedures, and test reports

• provides a forum for recording test discrepancies in support of discrepancy
reporting

• automates the collection of test metrics allowing for metrics reports to be
generated based upon database queries

6.1.1 Definitions

1. A functional test thread as referred to in this paper coincides to an end-

to-end path through the system. In defining a thread, the inputs and

expected outputs must be identified. Note that a thread may span several
system components, thus a single functional test thread may be associated
with one or many test cases.

2. Refer to the MIL-STD-498 documentation standard for a definition of a

test case and the information that should be maintained for each test case.
Note that there is a one-to-one correspondence between test cases and test
procedures.

3. Refer to the MIL-STD-498 documentation standard for a definition of a

test procedure and the information that should be maintained for each
test procedure.

6.1.2 Recommendation

.

Develop a client/server application where test thread, test case, test pro-

cedure and test result information can be input on the platform most
used. Several Rapid Application Development (RAD) tools exist which

create client applications for PC, Mac, and Unix platforms. Consider

Powerbuilder from Sybase (formerly a Powersoft product), SQLWindows

from Gupta Corporation, and JAM from JYACC Corporation. The bene-

fits associated with building a client/server application include sharing of
data between geographically dispersed individuals or teams and support
for either centralized or distributed databases.

3O

2. SelectanRDBMSsufficientto supporttheresourcerequirementsforthe
project.Criteria should include number of users, amount of data, etc.

6.1.3 Implementation

A Test Management Database (TMDB) application was built for the Earth Ob-

serving System Data and Information System (EOSDIS) Core System (ECS)
integration and system certification test activities. The MIL-STD-498 was uti-

lized to define much of the information supported by the TMDB schema. The

TMDB is a client/server application that was built using the Gupta SQLWin-

dows product. The TMDB is a PC/Windows client application which commu-

nicates to an RTM/Oracle database and a Sybase SQL Server database, both of

which reside on a Sun SPARC 1000 running Solaris. The Requirements Trace-

ability Management (RTM) COTS tool from Marconi serves as the requirements

repository delivered by the developer. RTM uses Oracle as the RDBMS where

it stores data. All test thread, test case, test description, and test result infor-
mation is stored in the Sybase SQL Server RDBMS. Gupta Corporation is in

beta test of a Unix client and is expected to support Mac clients in the second

quarter of 1996.

6.2 Requirements-based Testing and Analysis

How should we represent requirements for a large software system? Many

projects still rely on natural language as the main way of representing re-

quirements. And yet for complex requirements, natural language is notoriously

ambiguous. This article describes a simple experiment to demonstrate the am-

biguity of English language requirements, and discusses the benefit of using
redundancy to improve detection of ambiguity.

Consider this requirement, from the FDIR (Fault Detection, Isolation and

Recovery) requirements for Space Station:

(2.16.3.f) While acting as the bus controller, the C&C MDM CSCI
shall set the e,c,w, indicator identified in Table 3.2.16-II for the cor-

responding RT to "failed" and set the failure status to "failed" for
all RT's on the bus upon detection of transaction errors of selected

messages to RTs whose 1553 FDIR is not inhibited in two consecu-

tive processing frames within 10O millisec of detection of the second

transaction error if; a backup BC is available, the BC has been
switched in the last 20 see, the SPD card reset capability is inhib-

ited, or the SPD card has been reset in the last 10 major (10-second)

frames, and either:

1. the transaction errors are from multiple RT's, the current chan-

nel has been reset within the last major frame, or

31

2. thetransactionerrorsarefrommultipleRT's,thebuschannel's
resetcapabilityis inhibited,andthecurrentchannelhasnot
beenresetwithinthelastmajorframe.

Wegavethisrequirementtofourdifferentpeople,andaskedthemto produce
atruth tableto clarifytheconditionsunderwhichtherequiredfunctionshould
beprovided.Wereceivedfourdifferentanswers,whichdifferedinboththenum-
berofconditionsidentified(i.e.numberofrowsin thetable)andthenumber
ofcombinationsunderwhichthefunctionwouldbeactivated(i.e. columnsin
thetable).

Thedifferencesin theresponsesshowthattheoriginalrequirementsstate-
mentisriddledwithpotentialambiguities.Forexample,themixtureof "ands"
and"ors"therequirementisaproblembecause,unlikeprogramminglanguages,
Englishdoesnot haveanystandardprecedencerules.It is not clearhowto
scopethevarioussubclauses,either.Forexample,thetimingconditionwithin
100millisec..,couldreferto the inhibitionof theFDIR,or to oneor bothof
therequiredsettingoperations.With somedomainknowledge,it ispossibleto
guessthemostlikelyinterpretation,but thisisbynomeansatrivial task,and
thereisnoguaranteethateveryonewhoneedsto readthisrequirementwill get
it right.

Ideally,wewouldliketo ensurethat everyonewhoreadsa requirementwill
interpretit in exactlythesameway,thewaythat wasintended.Aswithany
communicationactthereisa balanceofresponsibilitybetweentheauthorand
thereader:the authormusttakestepsto ensureherwordsarenot opento
misinterpretation,andthe readershouldtakestepsto interpretcarefullythe
meaningofthewords.Theauthorcannotbeexpectedto anticipateall stupid
ordisingenuousinterpretations,but at thesametimeisunderanobligationto
ensurethatthemeaningisclearfortheintendedaudience.

Onecouldarguethat ourexperimentwasunfair,astherequirementwas
takeninisolation,andthepeoplewegaveit todidn'thavethedomainknowledge
to helpinterpretit. Furthermoreonecouldarguethatthedesignerswill know
howto interpretit correctly,throughinteractionwith theteamresponsiblefor
writingit. Unfortunately,theseanswersunderminethewholepointofwriting
downrequirements:it is importantto captureall therelevantinformationso
thatawiderangeofpeople(implementors,testers,maintainers,users,technical
authors,etc)canaccessit overa longperiodof time.

Sohowcanwereducethechanceofmisunderstandingsoccurring?A quick
andeasysolutionis to exploitredundancyto helpdetectmisunderstandings.
Considerthissimplefunctionspecification:

Thisfunctionshallcomputethesquareroot of its input, to within three
placesofdecimal,i.e. forinputx, it will outputy suchthat x < y i x+0.001

Strictlyspeakingthisspecificationisredundant:eithertheEnglishlanguage
part,or themathematicaldefinitioncouldbemissedout. However,theredun-
dancyactsasadoublecheckthat wehaveunderstoodtherequirement.If we

32

readbothpartsof the specification, and they seem to say the same thing, we
can be much more sure that we have understood what the author intended. If

the two parts seem to be saying different things, then either we have misread

one of them, or the author made a mistake.

In the example above, the two parts do not say the same thing. The math-
ematical description says that the error can only be positive, i.e. that the value

returned is never less than the actual root. The English description does not

include this restriction. Such a restriction would be very important to the imple-

mentor, because most Square root algorithms cannot guarantee a positive error.

Having spotted this, we can now go back and check which version is correct. If

we had only been given one part, we would not have thought to question this
issue.

We can adopt a similar approach throughout a specification. For example,

where a requirement like the FDIR requirement given above appears, the En-

glish description could be accompanied by the tabular form. Again, if the two

parts are consistent, then we can be fairly confident that we have understood

the requirement. The implications for IV&V should by now be clear: redun-

dancy provides the IV&V team with an powerful means of spotting errors in

the expression of the requirements.

6.3 The SRL Testing Toolkit

The SRL Testing Toolkit will be a toolbox of useful testing tools aimed at pro-

viding mechanisms for programmers to develop code that closely meets system

specifications. The toolkit will contain tools that are continually being used

to perform testing on RMP. In addition, these tools are undergoing a trans-
formation and growth so that they can accommodate other complex pieces of

software.

The main goal of the toolkit is to provide techniques and applications to

help developers structure their tests better and to get more tangible benefits
out of the testing process. Our view of testing is that it is ultimately essential

in any and all systems. However, the ways to approach it are lined with possible

pitfalls. The toolkit will attempt to guide developers and testers down the paths
that we have discovered lead to good payback.

The toolkit is separated into three main categories. These are:

- Test Visualization and Generation tools,

- Source Code tools, and

- Test Execution and Analysis tools.
The Test Visualization and Generation tools will include tools that are di-

rected at helping testers and developers visualize and generate test cases for

their systems. The Source Code tools will be a set of tools geared towards

allowing the developer and tester place statements in the code in order to see

what state the system operates through. This technique is very simple and ex-

33

tremelyuseful.All developersplaceprint statementsthroughtheircode,why?
Typically,theanswersaresuchthingsas:"usingthedebuggeris tootimecon-
suming, thesystemcannotbestopped,it must rocesswit ,,,, . . . P hout interruption
or the debugger is overkill for this oroblem" A_ __ '

- --- • _ ol Lnese answers stem trom
the fact that most debugging environments have not kept up with the advances

in software over the last 10 years. Advances such as multi-threading, continually
running network servers, and highly complex distributed systems are impossible

to debug using conventional debuggers. In addition, these debuggers change the

layout of the executable in ways that actually make some problems seen during
operation go away while debugging. Clearly something lightweight and as unob-

trusive as possible is needed. This is the domain of the humble print statement

that programmers have used for decades. The toolkit takes these statements to

the next level by providing mechanisms to capture them and analyze them in
real time.

We plan for the toolkit to support these platforms and languages:
- Windows 3.1, NT, and 95,

- BSD and SVR4 derivative UNIX systems, and
- C, C++, Tcl, Tk, Python, Perl, and Java.

As a first step, the toolkit will be released incrementally. The first piece
will be the logging facility scheduled for release in January. Other pieces of the
toolkit will be released as they become generally stable and usable.

34

Chapter 7

Classification

Because exhaustive testing is impossible on large systems, analysis of all sorts

(including testing) must be prioritized. This means that analysis must classify
parts of a software development project. Both process and products must be
classified for analysis in order to perform a cost-effective analysis of a software
development effort.

The work on classification has focused on the use of formal methods to

structure, manage, and generate test cases. The formal approach allows us to

make rational decisions regarding which functions and components of the system
are critical based on a formal statement of system requirements. We have used

our work on the Reliable Multicast Protocol (RMP) as a testbed to explore
the viability, strengths and weaknesses of this approach to classification. The

following sections discuss our work related to new classification techniques on
the RMP project.

7.1 Verification and Validation of RMP

Much work has been done in the area of verifying that implementations of com-

munication protocols conform to their specifications. Conformance is usually
verified through extensive testing of an implementation in which tests are de-

rived directly from the protocol specification. If an implementation behaves in

a manner predicted by the protocol specification, then the implementation is

said to conform to the specification. If not, then an error exists in the imple-
mentation of the protocol. Although this method does not formally verify that

a protocol specification and an implementation are consistent, it represents the
state-of-the-practice in this domain of software development.

In the recent paper I we describe our experiences while trying to formally

1j. Callahan and T. Montgomery, An Approach to Verification and Validation of a Reliable
Multicast Protocol, in Proceedings of the A CM International Symposium on Software Testing

35

specifyandimplement a complex communications protocol that provides reli-

able delivery of data in multicast-capable, packet-switching telecommunications

networks. The protocol specification, called the Reliable Multicasting Protocol

(RMP), was developed concurrently with its implementation. The implemen-
tation was developed incrementally using a combination of formal and informal

techniques in an attempt to ensure the correctness of its implementation with

respect to the evolving protocol specification. We found that many formal
methods did not help us in the development of the protocol specification nor

its implementation. We concluded that the best uses for formal methods in our

situation was in the specification of the protocol requirements and the genera-
tion of tests derived from the specifications applied to prototype versions of the
software during development.

One of the primary goals of our effort was to achieve high-fidelity between

the specification and implementation during development. High-fidelity means

that the specification model and implementation agree regarding the behavior
of the protocol. We felt that if fidelity was not a primary concern, then there ex-

isted the strong possibility that the specification and the implementation would

diverge in behavior. This would render analysis of any formal specification
model irrelevant in the development and maintenance of the software since such

analysis would offer little assurance that the actual code behaved in an identical
manner.

Our development process involved two teams: a design team and a verifi-

cation and validation (V&V) team. These two teams worked in an iterative,
interactive fashion that allowed the design team to focus on nominal behaviors

of the software while the V&V team examined off-nominal behaviors. The task

of the design team was (1) to specify the protocol in terms of mode tables and

(2) implement the protocol in C-t-+ as specified by the mode tables. The task

of the V_V team was to (1) analyze the consistency and completeness of the

mode tables by analyzing "paths" through the mode tables and (2) generate
tests from the mode tables for suspect conditions. Suspect conditions include

those paths identified in the mode table model as being deadlock, livelock, or

potential sources of unexpected behaviors. The VgzV team used the require-

ments mode model to identify cases that were considered by the design team to
be unusual or virtually impossible. In retrospect, these cases were the source of
several errors in the specification and implementation of RMP.

We use the terms "verification and validation" in a different context from

their typical usage because of our bipartite, prototyping development process. In
our case, the term "verification" refers to activities that help in the identification

of off-nominal behaviors of the software based oil analysis of the specification

model. We use the term "validation" to refer to activities that involve testing

the implementation for properties based on potential problems revealed through
verification analysis.

and Analysis (ISSTA), San Diego, CA, January 8-10, 1996.

36

Theprotocolspecificationasexpressedin themodetableshelpedusorga-
nizeandstructuretestswhiledevelopingimplementationprototypes.Testing
formedthedialoguebywhichthetwoteamscommunicatedabouttheintended
behaviorof theprotocolandits implementation.Thispaperrelatesourex-
periencesin developingourapproachanddescribesdetailsof ourmodel-based
testingmethods.Wedonot claimto have"formallyverifiedandvalidated"
theRMPspecificationandits implementation,but rather we have developed a

strategy and process by which the evolution of RMP is enhanced by testing and
verification. Our approach has been to study the problems that have occurred

during development, testing, and operation of RMP. Through a post-mortem

analysis of problems, we are trying to find methods that may have discovered
problems earlier in the development lifecycle.

We do not claim that RMP has been "verified and validated" to the ex-

tent that it is totally correct, rather that we have developed a technique that
strengthens analysis and testing in the long-term development of our software.

Short term problems did occur, but they helped evolve a specification model in

high-fidelity with an implementation. Co-evolution of the formal specification

model and the implementation was the most useful result of our study. Our tech-

nique allowed our two teams to structure their tests and other analysis activities.

Their activities supported each other in the development of the implementation
and refinement of the specifications. We will continue to use RMP as a testbed

problem and explore new specification and analysis techniques that complement
incremental software development activities. We are continuing to evolve the

specifications even though tile software has been released in an Beta test ver-

sion. This type of release scheme limits the use of RMP to non-critical projects
and helps use explore operational problems. When a problem in operation does

occur, we are using the mode tables to trace where the problem occurred. This
has been useful in understanding problems, finding why problems were or were

not detected earlier, and refining th e specification incrementally.

Additional information about RMP can be found at our WWW home page
at http://research.ivv.nasa.gov/

7.2 Status Update for RMP

The Reliable Multicasting Protocol (RMP) was used last month during the
International WWW Conference to multicast HTML pages around the world

on the Internet. RMP, developed by the NASA/WVU Research Project in

Fairmont, West Virginia, is used in the X-Web-Teach (XWT) tool developed by

the National Center for Supercomputing Applications (NCSA) at the University
of Illinois at Urbana-Champagne. Using RMP, the XWT tool can coordinate

the simultaneous navigation of HTML pages between thousands of users. When

one person follows a hyperlink, then all participants will also jump to the same

linked page. RMP is being formally verified and validated as a pilot project in

37

Fairmont.It is alsobeingusedwithintheNASAEOSDISarchitecturebeing
developedbyHughesAppliedInformationSystems.DetailsaboutRMPcanbe
foundin theVRQWinter94issue.PapersonRMP,thesoftwareitself,andits
applicationscanbefoundat http://research.ivv.nasa.gov/.

Therehavebeenremarkableimprovementsin the ReliableMulticastPro-
tocol(RMP)developmentin thelast fewmonths.In additionto the formal
verificationandvalidationactivitiesthat areprogressingwell,thedevelopment
teamhasbeenableto addressSecurityandAuthentication,to providea new
lookandfeelthroughanenhancedApplicationProgrammingInterface(API),
andto finishthefirststageof aMSWindowsNT andWindows95version.

Thetestingtechniquesusedandenhancedby theRMPdevelopmentand
testingteamsarenowstartingto beusedin defininga generictestingtoolkit
.Thistoolkit will beaimedat helpingotherdevelopersformallytestandan-
alyzeotherobject-orientedsystems.Moreinformationon this toolkitwill be
forthcomingasresearchondevelopingit progresses.

TheRMPdevelopmentteamhasaddressedtheheatedissueof securityand
authenticationin networkingbyplacinghooksintoRMPoperationthat allow
applicationsto defineandusetheirownmethods.Theapproachtakenis the
sameendorsedby IPv6,or IPng,wherethesecurityandauthenticationalgo-
rithmsareoptionalandorthogonalpartsof theprotocoloperation.RMPdoes
notmandateaparticularalgorithmforencryptionorauthentication.It simply
allowsthe applicationdeveloperto do theactualencryption/decryptionand
authenticationprocedureitself,thusallowinggreatrangeofchoicewithrespect
to whatschemescanbeemployed.AnRMPincrementalreleasein lateAugust
is thereleasethatsupportssecurityandauthentication.

With anypieceof softwaremeantto beusedby a widerangeof users,
especiallysoftwaredesignedfor usebyotherdevelopers,changesarenecessary
sothat thesoftwaremaintainsits applicabilityandcontinuesto stayusable.
Afteroveroneyearof use,first at severalAlphasitesandnowa widespread
use,RMPhasmaturedto thepointthat theoldAPI is just notsufficientfor
theneedsof theusers.In aneffortto attackthis,thedevelopmentteamhas
takencommentsfromasmanyusersasit canin orderto evaluatewhatanew
API needs.Thefirst draft of thisAPI is availableon the RMPHomePage
(http://research.ivv.nasa.gov/projects/RMP/MRP.html).ThisnewAPI is to
befirstdeployedin theRMP1.3Betareleasetentativelyscheduledforthefirst
weekofOctober.

NetworkingsoftwareisbecomingverywidespreadonPCsequippedwith the
MicrosoftWindowsoperatingsystem.TheRMPdevelopmentteamhasreceived
severalrequestsdatingbackto February1995for anRMPversionrunningon
MSWindows.Aftera littlebit ofthoughtandalot ofworkingwiththespecific
platform,I ampleasedto announcethat aversionof RMPis nowworkingon
MSWindowsNT 3.5andWindows95!Thefirst releaseto supportthiswill be
theRMP1.3Betarelease.

38

304 367-8348 _1 FAX 304 367-8211 Q 100 University Drive 131Fairmont WV 26554

Equal Opportunity/Affirmative Action Institution

